Investiciencias.com

Una nueva piel creada con bioingeniería se parece más a la real

Una nueva piel creada con bioingeniería se parece más a la real

 
Consultado:17 de abril 7:50pm
 
 
 
El producto, que se ha probado con éxito en ratas, tiene vasos sanguíneos y linfáticos, afirman los científicos

 Traducido del inglés: jueves, 30 de enero, 2014

MIÉRCOLES, 29 de enero de 2014 (HealthDay News) -- Las personas que necesitan injertos de piel debido a quemaduras u otras lesiones podrían algún día recibir una piel creada en un laboratorio con bioingeniería que funciona en gran medida como la piel humana real, informan unos investigadores suizos.

Esta nueva piel no solo tiene sus propios vasos sanguíneos, sino también (y esto es igual de importante) sus propios vasos linfáticos. Los vasos linfáticos son necesarios para evitar la acumulación de fluidos que pueden acabar con el injerto antes de que tenga tiempo de formar parte de la propia piel del paciente, indicaron los investigadores.

El descubrimiento de que los vasos linfáticos pueden crecer en un laboratorio también abre "un amplio espectro de posibilidades en el campo de la ingeniería de los tejidos, ya que todos los órganos del cuerpo humano (con la excepción del cerebro y el oído interno), contienen vasos linfáticos", afirmó la investigadora principal, Daniela Marino, de la Unidad de Investigación sobre Biología de los Tejidos del Hospital Universitario Pediátrico de Zúrich.

"Estos datos sugieren con fuerza que si un injerto de piel creado mediante ingeniería que contiene tanto vasos sanguíneos como linfáticos se trasplantara a pacientes humanos, la formación de fluidos se dificultaría, la curación de las heridas mejoraría y se fomentaría en gran medida la regeneración de una piel casi natural", señaló Marino.

Los investigadores dijeron que hasta ahora, los injertos de piel con bioingeniería no han contenido muchos de los componentes de la piel real, incluyendo los vasos sanguíneos y linfáticos, la pigmentación, las glándulas sudoríparas, los nervios y los folículos capilares.

Los vasos sanguíneos transportan los nutrientes, el oxígeno y otros factores esenciales que mantienen a los órganos vivos y en funcionamiento. Los vasos linfáticos quitan el fluido del tejido y lo devuelven al torrente sanguíneo.

"Cuando la piel sufre una herida, el fluido se acumula en el tejido dañado", explicó Marino. "Si no se quita de forma eficiente, se acumula y crea lo que se conoce como seromas, que pueden hacer que la herida no se cierre y que la piel no se regenere".

Para crear la piel nueva, el grupo de Marino usó células humanas de vasos sanguíneos y linfáticos, colocándolos en una solución que diseminaba las células en un gel parecido a la piel. Después de un tiempo en la incubadora, la mezcla creció y se convirtió en injertos de piel.

Los investigadores probaron entonces los injertos en ratas, y hallaron que la piel creada con bioingeniería se convirtió en una piel casi normal. Después de conectar el injerto con el propio sistema linfático de las ratas, recogió y extrajo el fluido del tejido, tal y como hace la piel normal.

Los injertos de piel que crecen de este modo podrían tener su mejor uso en los pacientes con quemaduras severas que no tienen suficiente piel propia para hacer injertos, señalaron los investigadores.

Pero los expertos comentaron que los experimentos en animales no siempre funcionan cuando se prueban en personas. Aun así, Marino dijo que tiene la esperanza de que no falte mucho para los ensayos con humanos.

No obstante, no todo el mundo está seguro de que este tipo de injertos tendrán una gran importancia.

El Dr. Alfred Culliford, director de cirugía plástica, reconstructiva y de mano en el Hospital Universitario de Staten Island, en la ciudad de Nueva York, calificó el tejido realizado con bioingeniería como "una tecnología en busca de un propósito".

"No creo que sea ampliamente aplicable para muchas personas que necesiten injertos de piel", afirmó Culliford. "Podría ser útil para los pacientes que han sufrido quemaduras en la mayor parte de la superficie de su cuerpo y que no tienen suficiente piel sana como para trasplantarla".

Culliford dijo que los mejores injertos para la mayoría de los pacientes son los de su propia piel. Además, señaló que no cree que añadir vasos linfáticos a un injerto sea un gran avance, ya que el drenaje del fluido ahora se hace con métodos como, por ejemplo, la comprensión del injerto.

Pero al Dr. Robert Glatter, médico de emergencias y experto en quemaduras del Hospital Lenox Hill en la ciudad de Nueva York, le pareció que la tecnología era más prometedora.

"Aunque todavía estemos trabajando con modelos animales, a corto plazo hay una probabilidad significativa de que esto pueda cambiar de forma considerable el modo en que tratamos las heridas que no se curan", indicó Glatter.

Las heridas que no se curan generalmente se encuentran en personas con diabetes o enfermedades vasculares cuya piel no funciona con normalidad. "No curan bien con los injertos de piel habituales", explicó Glatter.

Por su parte, Marino afirmó que el nuevo tejido es un avance real.

"En conjunto, lo más importante es tener tanto los vasos sanguíneos como los linfáticos en una piel creada con bioingeniería para iniciar la nutrición poco después del trasplante y para mantener el equilibrio de los fluidos de los tejidos", planteó. "Este paso en medicina regenerativa, esperado desde hace mucho, está ahora al alcance".

El estudio aparece en la edición del 29 de enero de la revista Science Translational Medicine.


Artículo por HealthDay, traducido por Hispanicare

FUENTES: Daniela Marino, Ph.D., Tissue Biology Research Unit, University Children's Hospital Zurich; Alfred Culliford, M.D., director, plastic, reconstructive and hand surgery, Staten Island University Hospital, New York City; Robert Glatter, M.D., emergency physician, Lenox Hill Hospital, New York City; Jan. 29, 2014, Science Translational Medicine

HealthDay

Lo que nos une a los Neandertales
 
La decodificación del genoma de los neandertales, publicada hoy en la revista Science, ha revelado cruces con el humano moderno y arroja una nueva luz sobre las características genéticas únicas humanas en la evolución. Según los análisis, del 1 al 4% del genoma humano (2% de sus genes) provienen del hombre de neanderthal, una especie que apareció hace unos 400.000 años y se extinguió hace 30.000.

"Podemos decir que se produjo una transferencia de genes entre los neandertales y los humanos modernos", destaca Richard Green, profesor de ingeniería biomolecular de la Universidad de California en Santa Cruz y principal autor del estudio. Según los investigadores, esta transferencia genética debió producirse hace 50.000 a 80.000 años, probablemente cuando los primeros Homo sapiens se marcharon de África, cuna de la humanidad, y coincidieron con los Homo neanderthalensis en Oriente Medio, antes de dispersarse por Eurasia.

Los científicos obtuvieron la secuencia a partir de tres muestras del yacimiento Vindija (Croacia), con restos de tres individuos femeninos distintos. Las muestras se complementaron con la secuenciación parcial de otros tres neandertales de Mezmaiskaya (Rusia), de Feldhofer (Alemania) y de la cueva de El Sidrón (Asturias, España). La secuencia fue comparada con los genomas de cinco humanos modernos procedentes de África meridional y occidental, Francia, China y Papúa-Nueva Guinea. El Neandertal resultó ser idéntico genéticamente al humano moderno en un 99,7%. El antepasado común del chimpancé con el humano moderno y los Neandertales, dicen los investigadores se remonta a hace 5 ó 6 millones de años.

Por otra parte, el estudio establece un catálogo de 83 genes que difieren entre humanos modernos y neandertales. Se trata de genes "clave para definirnos" y aún poco conocidos, según ha explicado Carles Lalueza-Fox, coautor del trabajo, que están relacionados con el metabolismo, la cognición, la morfología de la piel o la fisiología

"La decodificación de este genoma nos permite comenzar a definir todas las características del genoma humano que difieren de otros organismos vivos, incluidas aquellas del pariente más cercano al humano en la evolución", señala Svante Paabo, director del Departamento de Genética del Instituto Max Planck en Alemania, que dirige el proyecto de secuenciación. Según Richard Green, "es una mina de información sobre la evolución reciente de la humanidad y será aprovechada en los próximos años"

Tomado de: Revista Muy Interesante.